a) Xét ΔABC có
E là trung điểm của AB(gt)
F là trung điểm của AC(gt)
Do đó: EF là đường trung bình của ΔABC(ĐỊnh nghĩa đường trung bình của tam giác)
Suy ra: EF//BC
hay BEFC là hình thang có hai đáy là EF và BC và FE\(\perp\)AH(đpcm)
a) Xét ΔABC có
E là trung điểm của AB(gt)
F là trung điểm của AC(gt)
Do đó: EF là đường trung bình của ΔABC(ĐỊnh nghĩa đường trung bình của tam giác)
Suy ra: EF//BC
hay BEFC là hình thang có hai đáy là EF và BC và FE\(\perp\)AH(đpcm)
Bài 3: Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm. a) Tính độ dài AC. b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh: ΔABD = ΔEBD và AE ⊥ BD. c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC. d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng.
Cho tam giác ABC vuông tại A (AB< AC) có trung tuyến AM .Vẽ ME vuông góc với AB tại E, vẽ MF vuông góc với AC tại F.
a / Chứng minh rằng: Tứ giác AEMF là hình chữ nhật?
b / Gọi N là điểm đối xứng của M qua F. Chứng minh tứ giác ABMN là hình bình hành ? c/ Vẽ AH vuông góc với BC tại H. Chứng minh rằng: Tứ giác HMFE là hình thang cân? d/ Gọi I là trung điểm của NC. Chứng minh I, F, E thẳng hàng.
1. Cho △ABC cân tại A, AB > BC. H là trung điểm của BC
a) Chứng minh △ABH = △ACH. Từ đó suy ra AH ⊥ BC.
b) Tính AH nếu BC = 4cm, AB = 6cm
c) Tia phân giác của góc B cắt AH tại I. Chứng minh △BIC cân
d) Đường thẳng đi qua A và song song với BC cắt BI, CI lần lượt tại M và N. Chứng minh A là trung điểm MN
e) Kẻ IE ⊥ AB, IF ⊥ AC. Chứng minh IH = IE = IF
f) Chứng minh IC ⊥ MC
2. Cho △ABC có AB = AC = 10cm, BC = 12cm. Kẻ AH ⊥ BC.
a) Chứng minh △ABH = △ACH. Từ đó suy ra H là trung điểm BC
b) Tính AH
c) Kẻ HI ⊥ AB, HK ⊥ AC. Vẽ các điểm D và E sao cho I, K lần lượt là trung điểm của HD và HE. Chứng minh AE = AH
d) △ADE là tam giác gì? Vì sao? Chứng minh DE // BC
e) Tìm điều kiện của △ABC để A là trung điểm DE
P/s: Ai trả lời thì chủ yếu giúp em mấy câu in đậm ạ, còn mấy câu in nghiêng em biết làm rồi.
Cho ∆ABC cân tại A, đường cao BH, CK a) Chứng minh BH = CK b) Chứng minh HK // BC c) BH cắt CK tại I. Gọi trung điểm AI là M, trung điểm AH là N. Chứng minh MN//BH d) Gọi giao điểm của IN và HM là K. Gọi D là trung điểm IH. Chứng minh A, K, D thẳng hàng e) Chứng minh: MN = 1/2 IK
Cho tam giác ABC, M là một điểm nằm trong tam giác ABC. Gọi D là giao của AM và BC, E là giao của BM và CE, F là giao của CM và AB. Đường thẳng qua điểm M song song với BC cắt DE và DF lần lượt tại K và I. Chứng minh: MI = MK
Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD
Cho tam giác ABC (góc BAC < 90 độ), đường cao AH. Gọi E, F lần lượt là điểm đối xứng của H qua AB, AC, đường thẳng qua EF cắt AB, AC lần lượt tại M và N. CMR:
a) AE = AF
b) HA là phân giác của góc MHN
c) CM // EH ; BN // FH
Các bạn làm chi tiết giúp mình ạ.Mình cảm ơn ạ!
Cho tam giác ABC. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a) Chứng minh : \(\Delta AMB=\Delta CMD\)
b) Từ điểm A và C vẽ các đường vuông góc với BD, cắt BD lần lượt tại K và H. Chứng minh: AK=CH
c) Gọi E và F lần lượt là trung điểm của BC và AD. Chứng minh 3 điểm E,M,F thẳng hàng