Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vung nguyen thi

Cho a,b,c là độ dài 3 cạnh tam giác. Tìm GTNN của

P=\(\sqrt{\dfrac{2a}{2b+2c-a}}+\sqrt{\dfrac{2b}{2c+2a-b}}+\sqrt{\dfrac{2c}{2a+2b-c}}\)

Lightning Farron
4 tháng 12 2017 lúc 17:04

Áp dụng BĐT AM-GM ta có:

\(P=\sqrt{\dfrac{2a}{2b+2c-a}}+\sqrt{\dfrac{2b}{2c+2a-b}}+\sqrt{\dfrac{2c}{2a+2b-c}}\)

\(=\dfrac{\sqrt{6}a}{\sqrt{3a\left(2b+2c-a\right)}}+\dfrac{\sqrt{6}b}{\sqrt{3b\left(2c+2a-b\right)}}+\dfrac{\sqrt{6}c}{\sqrt{3c\left(2a+2b-c\right)}}\)

\(\ge\dfrac{\sqrt{6}a}{\dfrac{3a+2b+2c-a}{2}}+\dfrac{\sqrt{6}b}{\dfrac{3b+2c+2a-b}{2}}+\dfrac{\sqrt{6}c}{\dfrac{3c+2a+2b-c}{2}}\)

\(\ge\dfrac{\sqrt{6}a}{a+b+c}+\dfrac{\sqrt{6}b}{a+b+c}+\dfrac{\sqrt{6}c}{a+b+c}\)

\(=\dfrac{\sqrt{6}\left(a+b+c\right)}{a+b+c}=\sqrt{6}\)


Các câu hỏi tương tự
oooloo
Xem chi tiết
Cold Wind
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Nguyễn Bạch Gia Chí
Xem chi tiết
Kinder
Xem chi tiết
anh
Xem chi tiết
Thiên Yết
Xem chi tiết
kookie kookie
Xem chi tiết
Nguyễn Trần
Xem chi tiết