\(VT=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(VT\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
\(VT\ge\frac{9}{a^2+b^2+c^2+ab+bc+ca+ab+bc+ca}+\frac{7}{ab+bc+ca}\)
\(VT\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=30\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)