Đặt \(\left(a;b;c\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)
\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\)
Ta có: \(\frac{1}{x^2+2y^2+3}=\frac{1}{x^2+y^2+y^2+1+2}\le\frac{1}{2xy+2y+2}=\frac{1}{2}\left(\frac{1}{xy+y+1}\right)\)
Tương tự: \(\frac{1}{y^2+2z^2+3}\le\frac{1}{2}\left(\frac{1}{yz+z+1}\right)\); \(\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\left(\frac{1}{zx+x+1}\right)\)
Cộng vế với vế:
\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)
\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{xyz}{yz+z+xyz}+\frac{y}{xyz+xy+y}\right)\) (lưu ý \(xyz=1\))
\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{xy}{xy+y+1}+\frac{y}{xy+y+1}\right)=\frac{1}{2}\)
\(\Rightarrow P_{max}=\frac{1}{2}\) khi \(\left(x;y;z\right)=\left(1;1;1\right)\) hay \(\left(a;b;c\right)=\left(1;1;1\right)\)