Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{b}+\frac{1}{c}\geq \frac{4}{b+c}\)
\(\Rightarrow \frac{a}{b}+\frac{a}{c}\geq \frac{4a}{b+c}(1)\)
Hoàn toàn tương tự: \(\frac{b}{c}+\frac{b}{a}\geq \frac{4b}{c+a}(2)\)
\(\frac{c}{a}+\frac{c}{b}\geq \frac{4c}{a+b}(3)\)
Lấy \((1)+(2)+(3)\Rightarrow \frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\geq 4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
\(\Leftrightarrow \frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c$