Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Cả Phát

Cho a,b,c là các số dương

CMR : \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\ge4\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\)

Akai Haruma
14 tháng 4 2018 lúc 21:42

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{b}+\frac{1}{c}\geq \frac{4}{b+c}\)

\(\Rightarrow \frac{a}{b}+\frac{a}{c}\geq \frac{4a}{b+c}(1)\)

Hoàn toàn tương tự: \(\frac{b}{c}+\frac{b}{a}\geq \frac{4b}{c+a}(2)\)

\(\frac{c}{a}+\frac{c}{b}\geq \frac{4c}{a+b}(3)\)

Lấy \((1)+(2)+(3)\Rightarrow \frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\geq 4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

\(\Leftrightarrow \frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c$


Các câu hỏi tương tự
camcon
Xem chi tiết
Gay\
Xem chi tiết
dia fic
Xem chi tiết
T.Huyền
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Đức Lâm
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Yu gi Oh Magic
Xem chi tiết