Cho các số thực dương a,b,c. CMR
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{c^2+b^2}+\frac{c^3}{a^2+c^2}\ge\frac{a+b+c}{2}\)
Cho a,b,c là các số dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2019}\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\sqrt{\frac{2019}{8}}\)
Cho 3 số dương a,b,c thỏa mãn a+b+c=3. CMR
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho các số thực dương a,b,c. CMR
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\) ≥ \(\frac{a^2+b^2+c^2}{a+b+c}\)
Cho a, b, c là 3 số thực dương. CMR
\(\frac{\left(a+b\right)^2}{ab}+\frac{\left(b+c\right)^2}{bc}+\frac{\left(c+a\right)^2}{ca}\ge9+2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Cho các số thực dương thỏa mãn a + b + c = 3. CMR
\(\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}+\frac{c}{\sqrt{c^2+3}}\le\frac{3}{2}\)
Cho các số thực dương a,b,c. CMR
\(\frac{\left(b+c-a\right)^2}{\left(b+c\right)^2+a^2}+\frac{\left(a+c-b\right)^2}{\left(a+c\right)^2+b^2}+\frac{\left(b+a-c\right)^2}{\left(b+a\right)^2+c^2}\ge\frac{3}{5}\)
CMR: \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\) với a,b,c là các số dương
Dùng couchy hộ mik nhé
\(a.\frac{{{x^2}}}{{{x^2} + 2yz}} + \frac{{{y^2}}}{{{y^2} + 2zx}} + \frac{{{z^2}}}{{{z^2} + 2xy}} \ge 1\)
\(b.\frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} \ge \frac{3}{2}\)