Bài 11: Chia đa thức cho đơn thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Haibara Ai

cho a,b,c khác 0 sao cho a^3.b^3 + a^3.c^3 = 3.a^2.b^2.c^2. Tính M= (1/a+b). (1/b+c). 1/c+a

Akai Haruma
27 tháng 8 2017 lúc 9:33

Lời giải:

Đặt \((ab,bc,ac)=(x,y,z)\)

Theo bài ra ta có:

\(x^3+y^3+z^3=3xyz\Leftrightarrow x^2+y^3+z^3-3xyz=0\)

\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)

TH1:

\(x+y+z=0\) \(\Leftrightarrow ab+bc+ac=0\)

\(\Rightarrow M=\frac{1}{(a+b)(b+c)(c+a)}=\frac{1}{(a+b+c)(ab+bc+ac)-abc}=\frac{-1}{abc}\)

TH2:

\(x^2+y^2+z^2=xy+yz+xz\)

Theo BĐT AM-GM ta luôn có \(x^2+y^2+z^2\geq xy+yz+xz\)

Dấu bằng xảy ra khi

\(x=y=z\Leftrightarrow ab=bc=ac\Leftrightarrow a=b=c\)

Khi đó, \(M=\frac{1}{(a+b)(b+c)(c+a)}=\frac{1}{2a.2b.2c}=\frac{1}{8abc}\)


Các câu hỏi tương tự
kurbakaito
Xem chi tiết
kim sone
Xem chi tiết
Nguyễn Quốc Huy
Xem chi tiết
Phạm Thị Thanh Thanh
Xem chi tiết
Phạm Tú Uyên
Xem chi tiết
Trương Mai Khánh Huyền
Xem chi tiết
Miên Mộc
Xem chi tiết
hoc24
Xem chi tiết
Lai Guan Lin
Xem chi tiết