§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Gió

Cho a,b,c \(\ge0\). CMR:

\(\dfrac{a^3b}{a^4+a^2b^2+b^4}+\dfrac{b^3c}{b^4+b^2c^2+c^4}+\dfrac{c^3a}{c^4+c^2a^2+a^4}\le1\)

Serena chuchoe
2 tháng 8 2017 lúc 8:38

Theeo BĐT AM-GM ta có:

\(\sum\dfrac{a^3b}{a^4+a^2b^2+b^4}\le\sum\dfrac{a^3b}{2a^3b+b^4}=\sum\dfrac{a^3}{2a^3+b^3}\)

Ta cần chứng minh \(\sum\dfrac{a^3}{2a^3+b^3}\le1\)

hay \(\sum\dfrac{a^3}{a^3+2c^3}\ge1\)

Áp dụng BĐT Cauchy - Schwarz có:

\(\sum\dfrac{a^3}{2c^3+a^3}\ge\dfrac{\left(\sum a^3\right)^2}{\sum a^6+2\sum a^3b^3}=1\)

Đẳng thức xảy ra khi a = b = c