a) Xét ΔABI và ΔACI có
AB=AC(gt)
AI chung
BI=CI(I là trung điểm của BC)
Do đó: ΔABI=ΔACI(c-c-c)
b) Xét ΔAIC và ΔDIB có
IA=ID(gt)
\(\widehat{AIC}=\widehat{DIB}\)(hai góc đối đỉnh)
IC=IB(I là trung điểm của BC)
Do đó: ΔAIC=ΔDIB(c-g-c)
⇒\(\widehat{ACI}=\widehat{DBI}\)(hai góc tương ứng)(1)
mà \(\widehat{ACI}\) và \(\widehat{DBI}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔAIB và ΔDIC có
AI=DI(gt)
\(\widehat{AIB}=\widehat{DIC}\)(hai góc đối đỉnh)
IB=IC(I là trung điểm của BC)
Do đó: ΔAIB=ΔDIC(c-g-c)
⇒AB=CD(hai cạnh tương ứng)
mà AB=AC(gt)
nên CD=AC
Xét ΔACI và ΔDCI có
CA=CD(cmt)
CI chung
IA=ID(gt)
Do đó: ΔACI=ΔDCI(c-c-c)
⇒\(\widehat{ACI}=\widehat{DCI}\)(hai góc tương ứng)
mà \(\widehat{ACI}+\widehat{DCI}=\widehat{ACD}\)(tia CI nằm giữa hai tia CA,CD)
nên \(\widehat{ACD}=2\cdot\widehat{ACI}\)(2)
Từ (1) và (2) suy ra \(\widehat{ACD}=2\cdot\widehat{DBC}\)(đpcm)