CHo a,b,c >0 , a+b+c= \(\frac{3}{4}\)
TÌm GTNN của; P= \(\frac{1}{\sqrt[3]{a+3b}}\frac{1}{\sqrt[3]{b+3c}}\frac{1}{\sqrt[3]{c+3a}}\)
Bài 1:
Với a, b, c là các số thực dương, chứng minh rằng: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Bài 2:
Với x, y là các số thực dương, tìm giá trị nhỏ nhất của \(G=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
Bài 3:
Với a, b, c là các số thực dương, chứng minh rằng: \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\right)\)
Bài 4:
Với a, b, c là các số thực dương thỏa mãn abc = 1, chứng minh rằng: \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
Cho a,b,c >0. Chứng minh: \(\frac{a^8 +b^8+c^8}{a^3b^3c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1 . Cho a,b,c là các số thực dương thỏa mãn \(ab+bc+ca\ge3\)
Chứng minh : \(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}\ge\frac{3}{4}\)
Cho a,b,c > 0 . Chứng minh rằng: \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge2\left(\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\right)\)
Cho các số thực dương a,b,c. Chứng minh rằng :
\(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\)< \(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\)
1) Với x, y là các số thực dương thảo mãn \(\frac{x}{2}+\frac{y}{3}+\frac{xy}{6}=3\), chứng minh rằng \(27x^3+8y^3\ge432\)
2) Với a, b, c không âm thỏa mãn \(a^2+b^2+c^2=1\), chứng minh rằng \(a^3+2b^3+3c^3\ge\frac{6}{7}\)
3) Cho x, y, z là các số thực dương có tổng bằng 1, chứng minh rằng \(x+\sqrt{xy}+\sqrt[3]{xyz}\le\frac{4}{3}\)
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
Nhìn bài toán xong còn bạn nào có thể làm cho mình ko
1. x=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)
2.Chứng minh: a + b + c = 2019 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2019\) thì 1 trong 3 số phải có 1 số bằng 2019
3. Giải
a, \(\left|x-2\right|\cdot\left(x-1\right)\cdot\left(x+1\right)\cdot\left(x+2\right)=4\)
b, \(\frac{15x}{x^2-3x+4}=\frac{12}{x+4}+\frac{4}{x-1}+1\)