Lời giải:
Áp dụng hệ quả quen thuộc của BĐT AM-GM:
$3(ab+bc+ac)\leq (a+b+c)^2$
$1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$
Do đó:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ac}\geq \frac{(1+1+1+1)^2}{a^2+b^2+c^2+3(ab+bc+ac)}=\frac{16}{(a+b+c)^2+ab+bc+ac}\)
\(\geq \frac{16}{(a+b+c)^2+\frac{(a+b+c)^2}{3}}=\frac{12}{(a+b+c)^2}=12\)
\(\frac{2}{3ab}+\frac{2}{3bc}+\frac{2}{3ac}=\frac{2}{3}.\frac{a+b+c}{abc}=\frac{2}{3abc}\geq \frac{2}{3.\frac{1}{27}}=18\)
Cộng 2 BĐT trên lại:
\(\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\geq 12+18=30\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Lời giải:
Áp dụng hệ quả quen thuộc của BĐT AM-GM:
$3(ab+bc+ac)\leq (a+b+c)^2$
$1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}$
Do đó:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ac}\geq \frac{(1+1+1+1)^2}{a^2+b^2+c^2+3(ab+bc+ac)}=\frac{16}{(a+b+c)^2+ab+bc+ac}\)
\(\geq \frac{16}{(a+b+c)^2+\frac{(a+b+c)^2}{3}}=\frac{12}{(a+b+c)^2}=12\)
\(\frac{2}{3ab}+\frac{2}{3bc}+\frac{2}{3ac}=\frac{2}{3}.\frac{a+b+c}{abc}=\frac{2}{3abc}\geq \frac{2}{3.\frac{1}{27}}=18\)
Cộng 2 BĐT trên lại:
\(\Rightarrow \frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\geq 12+18=30\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$