\(P=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right):\frac{a-b}{a\sqrt{b}+b\sqrt{a}}=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}:\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{ab}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)