cho các số thực dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\)
cmr \(\frac{a^2+bc}{\sqrt{2a^2\left(b+c\right)}}+\frac{b^2+ca}{\sqrt{2b^2\left(c+a\right)}}+\frac{c^2+ab}{\sqrt{2c^2\left(a+b\right)}}\ge1\)
cho a,b,c > 0 thỏa mãn ab+bc+ca=1. Cmr:
\(\left(a^2+2b^2+3\right)\left(b^2+2c^2+3\right)\left(c^2+2a^2+3\right)\ge64\)
a)cho a,b,c > 0 . Cmr: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
b)cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\) . Cmr: \(\left(a^2b+b^2c+c^2a\right)\left(a+b+c\right)\ge9abc\)
Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
Source of Question: Câu hỏi của Hiếu Cao Huy - Toán lớp 9 | Học trực tuyến
Xét pt (1): \(\Delta=b^2-4ac\)
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\); \(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)
Xét pt (2) : \(\Delta=b^2-4ac\)
\(y_1=\dfrac{-b+\sqrt{\Delta}}{2c}\) ; \(y_2=\dfrac{-b-\sqrt{\Delta}}{2c}\)
Thay vào M:
\(M=\dfrac{\left(-b+\sqrt{\Delta}\right)^2}{4a^2}+\dfrac{\left(-b-\sqrt{\Delta}\right)^2}{4a^2}+\dfrac{\left(-b+\sqrt{\Delta}\right)^2}{4c^2}+\dfrac{\left(-b-\sqrt{\Delta}\right)^2}{4c^2}\)
\(=\dfrac{b^2-2b\sqrt{\Delta}+\Delta}{4a^2}+\dfrac{b^2+2b\sqrt{\Delta}+\Delta}{4a^2}+\dfrac{b^2-2b\sqrt{\Delta}+\Delta}{4c^2}+\dfrac{b^2+2b\sqrt{\Delta}+\Delta}{4c^2}\)
\(=\dfrac{2b^2+2\Delta}{4a^2}+\dfrac{2b^2+2\Delta}{4c^2}=\dfrac{b^2+\Delta}{2a^2}+\dfrac{b^2+\Delta}{2c^2}=\dfrac{b^2c^2+\Delta c^2}{2a^2c^2}+\dfrac{a^2b^2+\Delta a^2}{2a^2c^2}\)
\(=\dfrac{b^2\left(a^2+c^2\right)+\Delta\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2+\Delta\right)\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2+b^2-4ac\right)\left(a^2+c^2\right)}{2a^2c^2}\)
\(=\dfrac{\left(2b^2-4ac\right)\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2-2ac\right)\left(a^2+c^2\right)}{a^2c^2}=\dfrac{a^2b^2-2a^3c+b^2c^2-2ac^3}{a^2c^2}\)
\(=\dfrac{a^2b^2}{a^2c^2}+\dfrac{b^2c^2}{a^2c^2}-\dfrac{2a^3c}{a^2c^2}-\dfrac{2ac^3}{a^2c^2}=\dfrac{b^2}{c^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{c}-\dfrac{2c}{a}\)
\(=\left(\dfrac{b^2}{c^2}-\dfrac{2ac}{c^2}\right)+\left(\dfrac{b^2}{a^2}-\dfrac{2ac}{a^2}\right)=\dfrac{b^2-2ac}{c^2}+\dfrac{b^2-2ac}{a^2}\)
\(=\left(b^2-2ac\right)\left(\dfrac{1}{c^2}+\dfrac{1}{a^2}\right)\)
Thanks a lots for your answering ^^!
Hiếu Cao Huy: Wait together!
Cho a,b,c dương. Chứng minh
\(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(c+a\right)^2}\ge\dfrac{3\sqrt{3abc\left(a+b+c\right)}.\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)^3}\)
CMR với mọi số nguyên a,b,c ta đều có BĐT:
\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\dfrac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\dfrac{c^2}{\left(2c+a\right)\left(2c+b\right)}\le\dfrac{1}{3}\)
cmr với mọi số thực a, b, c dươngta đều có bđt
\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\dfrac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\dfrac{a^2}{\left(2c+a\right)\left(2c+b\right)}\)<=3
a,b,c>0 . Tìm Min \(E=\left(1+\dfrac{a}{2b}\right)\left(1+\dfrac{b}{2c}\right)\left(1+\dfrac{1}{2a}\right)\)