Dễ mà bạn ~~~
Ta có :
a=b+5
Để c/m a>b
Mà b+5>b
Nên a>b(đpcm)
Dễ mà bạn ~~~
Ta có :
a=b+5
Để c/m a>b
Mà b+5>b
Nên a>b(đpcm)
Cho a>b, chứng minh 4-a<5-b
Cho a,b,c là các số nguyên và a + b + c chia hết cho 5. Chứng minh a5 + b5 + c5 chia hết cho 5
Chứng minh rằng với mọi số nguyên a và b :
a, a3b - ab3 chia hết cho 6
b, a5b - ab5 chia hết cho 30
Chứng minh đẳng thức:
a) Cho \(2\left(a^2+b^2\right)=\left(a-b\right)^2.\) Chứng minh rằng a; b là 2 số đối nhau.
b) Cho \(a^2+b^2+c^2+3=2\left(a+b+c.\right)\) Chứng minh rằng a = b = c = 1
c) Cho \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right).\) Chứng minh rằng a = b = c
Cho a, b, c > 0. Chứng minh \(\dfrac{a}{3a+b+c}+\dfrac{b}{3b+a+c}+\dfrac{c}{3c+a+b}\le\dfrac{3}{5}\)
Cho a và b là hai số tự nhiên . Biết a chia cho 5 dư 2 và b chia cho 5 dư 3. Chứng minh rằng ab chia cho 5 dư 1
a) Chứng minh rằng số n2 +2014 với n nguyên dương không là số chính phương.
b) Cho a, b là các số dương thỏa mãn a3 + b3 = a5 + b5.
Chứng minh rằng: a2 + b2 ≤ 1 + ab
Cho \(x+y+z=0\)
Chứng minh rằng: \(a^5\left(b^2+c^2\right)+b^5\left(a^2+c^3\right)+c^5\left(a^2+b^2\right)=\dfrac{1}{2}\left(a^3+b^3+c^3\right)\left(a^4+b^4+c^4\right)\)
bài 1 .chứng minh rằng:
a,(x-y)(x2+xy+y2)+(x+y)(x2-xy+y2)=2x
b,x2-4x+5>0 với mọi x
Bài 2:cho a+b+c=0.chứng minh rằng :2(a5+b5+c5)=5abc(a2+b2+c2)