Lời giải:
Sửa lại đề. Cho $a+b\geq 0$. CMR \(\frac{a+b}{2}\leq \sqrt[3]{\frac{a^3+b^3}{2}}\)
Ta có:
\(a^3+b^3=(a+b)(a^2-ab+b^2)(1)\)
\(a^2-ab+b^2=(a+b)^2-3ab\)
\((a-b)^2\geq 0\Rightarrow a^2+b^2\geq 2ab\Rightarrow (a+b)^2\geq 4ab\Rightarrow \frac{3}{4}(a+b)^2\geq 3ab\)
\(\Rightarrow a^2-ab+b^2=(a+b)^2-3ab\geq (a+b)^2-\frac{3}{4}(a+b)^2=\frac{(a+b)^2}{4}(2)\)
Từ \((1);(2)\Rightarrow a^3+b^3\geq (a+b).\frac{(a+b)^2}{4}\)
\(\Rightarrow \frac{a^3+b^3}{2}\geq \frac{(a+b)^3}{8}\Rightarrow \sqrt[3]{\frac{a^3+b^3}{2}}\geq \frac{a+b}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b\geq 0$