Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Niki Rika

Cho \(a;b>0\)\(a+b\le1\). Tìm giá trị nhỏ nhất \(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab\).

missing you =
23 tháng 4 2022 lúc 8:37

\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}+8ab-4ab\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{1}{2}.8}-\dfrac{4.\left(a+b\right)^2}{4}=\dfrac{4}{\left(a+b\right)^2}+4-\left(a+b\right)^2\ge4+4-1=7\Rightarrow minA=7\Leftrightarrow a=b=\dfrac{1}{2}\)


Các câu hỏi tương tự
Niki Rika
Xem chi tiết
Hồ Quang Hưng
Xem chi tiết
Ngô Chí Vĩ
Xem chi tiết
Anh Phạm
Xem chi tiết
Scarlett Ohara
Xem chi tiết
VUX NA
Xem chi tiết
hoàng minh chính
Xem chi tiết
hoàng minh chính
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết