Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
$a+2b=\frac{a+b}{2}+\frac{a+b}{2}+b\geq 3\sqrt[3]{\frac{b(a+b)^2}{4}}$
$\Rightarrow 4(a+2b)^3\geq 4.[3\sqrt[3]{\frac{(a+b)^2b}{4}}]^3$
$=27b(a+b)^2$ (đpcm)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương:
$a+2b=\frac{a+b}{2}+\frac{a+b}{2}+b\geq 3\sqrt[3]{\frac{b(a+b)^2}{4}}$
$\Rightarrow 4(a+2b)^3\geq 4.[3\sqrt[3]{\frac{(a+b)^2b}{4}}]^3$
$=27b(a+b)^2$ (đpcm)
Cho a, b, c > 0. Chứng minh \(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)
Cho \(a,b>0\) thoả \(a+b=4\). Chứng minh:
\(a^2b^2\left(a^2+b^2\right)\text{≤}128\)
Cho a,b,c>0 .
Chứng minh rằng \(\dfrac{a^4}{a^3+b^3^{ }}+\dfrac{b^4}{b^3+c^3}+\dfrac{c^4}{c^3+a^3}\)≥\(\dfrac{a+b+c}{2}\)
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)
Cho \(a,b,c\ge0\) và \(a^2+b^2+c^2+abc=4\) Chứng minh \(ab+bc+ca\le abc+2\)
Cho a,b>0 thỏa \(8ab-2=3\left(a^4+b^4\right)\). Tính Max P = \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{ab}{3a^2b^2+1}\)
Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:
\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)
Bài 2: Chứng minh rằng với mọi số thực x,y ta có:
\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)
Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:
\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)
Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)
Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)
Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)
Bài 7: Chứng minh rằng với mọi số thực a,b ta có:
\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)
Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:
\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)
Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:
\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)
Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:
\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)
Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:
\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)
cho a,b,c > 0 thỏa \(\left(a+2b\right)\left(\dfrac{1}{b}+\dfrac{1}{c}\right)=4\) và \(3a\ge c\)
Chứng minh rằng : \(\dfrac{a^2+2b^2}{ac}\ge1\)
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)
Chứng minh rằng với mọi a, b, c > 0 ta có :
\(\frac{a^4}{1+a^2b}+\frac{b^4}{1+b^2c}+\frac{c^4}{1+c^2a}\ge\frac{abc\left(a+b+c\right)}{1+abc}\)