\(ab>2018a+2019b\Rightarrow1>\frac{2018}{b}+\frac{2019}{a}\)
\(\Rightarrow1>\frac{\sqrt{2018}^2}{b}+\frac{\sqrt{2019}^2}{a}\ge\frac{\left(\sqrt{2018}+\sqrt{2019}\right)^2}{b+a}\) (Cauchy-Schwarz)
\(\Rightarrow a+b>\left(\sqrt{2018}+\sqrt{2019}\right)^2\)