\(a+b=a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\)
\(Q=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{4037}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{4037}{\frac{\left(a+b\right)^2}{2}}=\frac{8078}{\left(a+b\right)^2}\ge\frac{4039}{2}\)
\(Q_{min}=\frac{4039}{2}\) khi \(a=b=1\)