Lời giải:
Thực chất đề bài chỉ cần điều kiện $ab\geq 1$ là đủ rồi bạn.
BĐT cần chứng minh tương đương với:
\(\frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2+1)(b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\Leftrightarrow (ab-1)(a-b)^2\geq 0\)
(luôn đúng với mọi $ab\geq 1$)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $ab=1$ hoặc $a=b$