Câu 1: Cho \(x^2-6x+1=0\).Tính giá trị biểu thức B=\(\frac{x^4+8x^2+1}{x^2}\)
Câu 2:
a/ Rút gọn biểu thức P=\(\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\). Trong đó a,b,c là các số đôi 1 phân biệt.
b/ Cho đa thức f(x) có bậc lớn hơn 1, có hệ số nguyên thỏa mãn f(5) chia hết cho 7, f(7) chia hết cho 5. CMR: f(12) chia hết cho 35
Câu 3: Cho các số x,y là các số thỏa mãn \(3x^2+x=4y^2+y\).CMR:
Bài 1: Với a,b,c khác 0. CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c^{ }}\)
Bài 2: CMR: Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và a + b +c = abc thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) với điều kiện a,b,c khác 0 và a+b+c khác 0.
Cho các số thực không âm a, b, c thoả mãn a2 + b2 + c2 = 1. Tìm giá trị lớn nhất của \(P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
1CMR: x2+y2+8\(\ge\) xy+2x+2y
2 Cho a+b+c=6 . Cmr: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{3}{4}\)
3 Cho x+y+z+xy+yz+zx=6. Cmr: x2+y2+z2 \(\ge3\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Chứng minh a+b+c=abc
Cho biểu thức :\(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}\)
CMR:
a) nếu a, b, c là độ dài của 3 cạnh tam giác thì M>1
b)Nếu M = 1 thì 2 trong ba phân thức đã cho của biểu thức M bằng 1, phân thức còn lại bằng -1
CMR:neu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=R\) va a+b+c=abc thi \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Cho các số thực a, b thỏa mã a + b = 1 và ab khác 0. Tính
\(P=\frac{a}{b^3-1}-\frac{b}{a^3-1}+\frac{2\left(a-b\right)}{a^2b^2+3}\)