Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B
a) Tìm x và n biết : x2 + 2x +4n - 2n+1 + 2 = 0
b) Cho a + b + c +d = 0. CMR: a3 + b3 + c3 + d3 = 3( b + c )( ad - bc )
c) Xác định a,b để : A = x4 - 2x3 + 3x2 + ax + b là bình phương của một đa thức
Cho 3 số a, b, c thỏa mãn \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\).
CMR: \(a^3+b^3+c^3=3abc\left(a+b+c\right)\).
Bài 1: Cmr
a, a.(a-1)-(a+3)(a+2):hết cho 6
b,a.(a+2)-(a-7).(a-5):cho 7
c,cho a.(b+1)+b.(a+1)=(a+1)(b+1) .Cm a.b=1
Cho a,b,c là số thực,a+b+c=3,d+e+f=3.ad+be+cf=3.Cmr a+b+c+d+e+f
Cho a,b,c là số thực,a+b+c=3,d+e+f=3.ad+be+cf=3.Cmr a+b+c+d+e+f
a) Tìm GTNN của biểu thức:
\(A=13x^2+y^2+4xy-2y-16x+2015\)
b) Cho 2 số a, b thỏa mãn điều kiện a+b=1. CMR: \(a^3+b^3+ab\ge\dfrac{1}{2}\).
Chứng minh rằng với mọi a,b thuộc R , ab=1 thì a^5 + b^5= (a^3+ b^3)(a^2+ b^2)-( a+ b)
Cho tứ giác ABCD, AC vuông góc với BD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. CMR: MP= NQ
Bài 8: Cho a, b thuộc R thỏa mãn: a+ b+ab=8. Tìm GTNN của B= a^2+b^2
Bài 9: Cho a, b thuộc R thỏa mãn: a+b+ab=35. Tìm GTNN của: C= a^2+b^2
Bài 10: Tìm n để: (n thuộc N)
a) n^2+5
b) n^2-n+1 là số chính phương