\(VT=a^2+b^2+c^2+d^2-2\left(a+c\right)\left(b+d\right)\)
\(VT\ge\frac{1}{4}\left(a+b+c+d\right)^2-\frac{1}{2}\left(a+b+c+d\right)^2=-\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{1}{4}\)
\(VT=a^2+b^2+c^2+d^2-2\left(a+c\right)\left(b+d\right)\)
\(VT\ge\frac{1}{4}\left(a+b+c+d\right)^2-\frac{1}{2}\left(a+b+c+d\right)^2=-\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{1}{4}\)
Cho a, b, c, d là các số tùy ý thỏa mãn a+b+c+d=1. Chứng minh
a2+b2+c2+d2-2ab-2bc-2cd-2da≥- 1/4
cho a,b,c thỏa mãn a+b+c=0 và a2=2(a+c+1)(a+b-1). tính giá trị A=a2+b2+c2
Cho a,b,c là các số dương và \(a+b+c\le1\)
Chứng minh \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\)9
cho a,b,c >0, a2+b2+c2=1
cmr : \(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\)
Cho p là số nguyên tố lẻ và a,b,c,d là các số nguyên dương nhỏ hơn p đồng thời a2+b2 chia hết cho p và c2+d2 chia hết cho p.C/m: Trong 2 số ac+bd và ad+bc có một và chỉ một số chia hết cho p
Cho a,b \(\ge\)0 thỏa mãn a2+b2=1. Tìm GTNN và GTLN của A = a3+ b3
Cho a, b, c là các số dương thỏa mãn: \(a^2+2b^2\le3c^2\). Chứng minh: \(\dfrac{1}{a}+\dfrac{2}{b}\ge\dfrac{3}{c}\)
Tìm tất cả các số thực a,b,c thoả mãn đồng thời các điều kiện a2 + b2 + c2 = 38, a + b = 8 và
b + c ≥ 7