Ta có: a + b + c = 0
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow2ab+2ac+2bc=-2\)
\(\Rightarrow ab+ac+bc=-1\)
\(\Rightarrow\left(ab+bc+ac\right)^2=1\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=1\)
Lại có: \(a^2+b^2+c^2=1\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1\)
\(\Rightarrow a^4+b^4+c^4=1-2\left(a^2b^2+a^2c^2+b^2c^2\right)=-1\)