Ta có:\(a>2,b>2\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}< \dfrac{1}{2}+\dfrac{1}{2}=1\)
\(\Rightarrow\dfrac{b}{ab}+\dfrac{a}{ab}< 1\)
\(\Rightarrow\dfrac{a+b}{ab}< 1\)
\(\Rightarrow a+b< ab\left(đpcm\right)\)
theo đề bài ta có
`\(a>2,b>b\\ \Rightarrow\dfrac{1}{a}+\dfrac{1}{b}< \dfrac{1}{2}+\dfrac{1}{2}=1\\ \Rightarrow\dfrac{1}{a}+\dfrac{1}{b}< 1\\ \Rightarrow\dfrac{b}{ab}+\dfrac{a}{ab}< 1\left(do\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{b}{ab}+\dfrac{a}{ab}\right)\\ \Rightarrow\dfrac{a+b}{ab}< 1\\ \Rightarrow a+b< ab\left(đpcm\right)\)