\(P=\dfrac{x^3+y^3+z^3}{xy+2yz+zx}=\dfrac{x^3}{xy+2yz+zx}+\dfrac{y^3}{xy+2yz+zx}+\dfrac{z^3}{xy+2yz+zx}\)\(\ge\sqrt[3]{\dfrac{x^3\cdot y^3\cdot z^3}{\left(xy+2yz+zx\right)^3}}=\dfrac{xyz}{xy+2yz+zx}\)
ta có: (x+y+z)^2≥0 <=>xy+yz+zx ≥\(-\dfrac{x^2+y^2+z^2}{2}\) (1)
(y+z)^2 ≥ 0 <=> yz ≥ \(-\dfrac{y^2+z^2}{2}\) (2)
(1), (2) => xy+2yz+zx ≥ \(-\dfrac{x^2}{2}\)
-.-
trên tử là x^2+y^2+z^2 nhé bài này dùng pp điểm rơi giả định :v