Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Tình Nguyễn Hữu

Cho 3 số thực dương \(a,b,c\) thỏa mãn \(abc=1\). Chứng minh rằng \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\ge2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Akai Haruma
1 tháng 1 2017 lúc 22:31

Lời giải:

Áp dụng bất đẳng thức AM_GM kết hợp với $abc=1$:

\(\frac{a}{b}+\frac{a}{c}+1\geq 3\sqrt[3]{\frac{a^2}{bc}}=3a\). Tương tự với các phân thức khác

\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+3\geq 3(a+b+c)\)

Tiếp tục áp dụng AM_GM:

\(\frac{b}{a}+b^2c^2a+c\geq 3\sqrt[3]{b^3c^3}=3bc......\), công theo vế và rút gọn

\(\Rightarrow \frac{b}{a}+\frac{c}{b}+\frac{a}{c}+a+b+c\geq 2(ab+bc+ac)=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Cộng hai BĐT thu được lại, ta có:

\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq 2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$

Bình luận (0)

Các câu hỏi tương tự
Tùng Trần Sơn
Xem chi tiết
Trần Huy tâm
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Ngô thừa ân
Xem chi tiết
trần trang
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Trần Khánh Huyền
Xem chi tiết
Tiến Lăng
Xem chi tiết
lê thị hoài
Xem chi tiết