Cho các số a, b, c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(S=\dfrac{2013a^2-2014}{a^2+2bc}+\dfrac{2013b^2-2014}{b^2+2ca}+\dfrac{2013c^2-2014}{c^2+2ab}\)
Cho 3 số phân biệt a,b,c từng đôi một khác nhau thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn biểu thức:
\(\:N=\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+2ab}\)
Cho a, b, c khác nhau đôi một và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). Rút gọn các biểu thức:
a) M= \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)
Cho biểu thức: \(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}\)
a, Nếu a,b,c là độ dài ba cạnh của tam giác thì M>1
b, Nếu M=1 thì hai trong ba phân thức đã cho của biểu thức M bằng 1, phân thức còn lại bằng -1
Cho a,b,c thỏa mãn a + b + c = \(\frac{1}{2}\) và (a + b)(b + c)(c + a) khác 0
Tính giá trị của P = \(\frac{2ab+c}{\left(a+b\right)^2}.\frac{2bc+a}{\left(b+c\right)^2}.\frac{2ca+b}{\left(c+a\right)^2}\)
cho a, b, c là các độ dài thỏa mãn: \(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}>1\)
CM rằng: a, b, c là các cạnh của tam giác
cho a,b,c đôi một khác nhau \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn A=\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Rút gọn và tính giá trị của các biểu thức:
a)\(\frac{16a^2-40ab}{8a^2-24ab}với\frac{a}{b}=\frac{10}{3}\)
b)\(\frac{1}{a}-\frac{1}{b+c}\)\(\left(1+\frac{b^2+c^2-a^2}{2bc}\right)\)
\(\frac{1}{a}+\frac{1}{b+c}\)
Cho a,b,c > 0 thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3\)
Tìm GTLN của biểu thức: P = \(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\)