Ta có: $$\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right){\left( {x + y + z} \right)^2} = \left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)\left( {3 + 2xy + 2yz + 2xz} \right)$$$$ = 3\sum\limits_{cyc} {\frac{1}{x}} + 4\sum\limits_{cyc} x + \sum\limits_{cyc} {\left( {\frac{{yz}}{x} + \frac{{zx}}{y}} \right)} \geqslant 3\left( {\sum\limits_{cyc} {\frac{1}{x}} + \sum\limits_{cyc} x + \sum\limits_{cyc} x } \right) \geqslant 9\root 3 \of {\left( {\sum\limits_{cyc} {\frac{1}{x}} } \right){{\left( {\sum\limits_{cyc} x } \right)}^2}} $$$$ \Rightarrow {\left( {\sum\limits_{cyc} {\frac{1}{x}} .{{\left( {\sum\limits_{cyc} x } \right)}^2}} \right)^3} \geqslant {9^3}\sum\limits_{cyc} {\frac{1}{x}} .{\left( {\sum\limits_{cyc} x } \right)^2} \Rightarrow \sum\limits_{cyc} {\frac{1}{x}} .{\left( {\sum\limits_{cyc} x } \right)^2} \geqslant 27$$Mặt khác ta lại có: $$P = 2\left( {x + y + z} \right) + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \sum\limits_{cyc} x + \sum\limits_{cyc} x + \sum\limits_{cyc} {\frac{1}{x}} \geqslant 3\root 3 \of {{{\left( {\sum\limits_{cyc} x } \right)}^2}\sum\limits_{cyc} {\frac{1}{x}} } = 9$$