Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{1}{1+\frac{1}{a^3}}+\frac{1}{1+\frac{1}{b^3}}+\frac{1}{1+\frac{1}{c^3}}\geq 3\sqrt[3]{\frac{1}{(1+\frac{1}{a^3})(1+\frac{1}{b^3})(1+\frac{1}{c^3})}}\)
\(\frac{\frac{1}{a^3}}{1+\frac{1}{a^3}}+\frac{\frac{1}{b^3}}{1+\frac{1}{b^3}}+\frac{\frac{1}{c^3}}{1+\frac{1}{c^3}}\geq 3\sqrt[3]{\frac{\frac{1}{a^3b^3c^3}}{(1+\frac{1}{a^3})(1+\frac{1}{b^3})(1+\frac{1}{c^3})}}\)
Cộng theo vế:
\(\Rightarrow 3\geq 3.\frac{1+\frac{1}{abc}}{\sqrt[3]{(1+\frac{1}{a^3})(1+\frac{1}{b^3})(1+\frac{1}{c^3})}}\)
\(\Rightarrow P=(1+\frac{1}{a^3})(1+\frac{1}{b^3})(1+\frac{1}{c^3})\geq (1+\frac{1}{abc})^3\)
Mà theo AM-GM: \(6=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq 8\)
\(\Rightarrow P\geq (1+\frac{1}{abc})^3\geq (1+\frac{1}{8})^3=\frac{729}{512}\)
Vậy \(P_{\min}=\frac{729}{512}\Leftrightarrow a=b=c=2\)