Lời giải:
Ta có: \(N=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)\)
\(=4-2(ab+bc+ac)\)
Vì \(a,b,c\leq 1\Rightarrow (a-1)(b-1)(c-1)\leq 0\)
\(\Leftrightarrow (ab-a-b+1)(c-1)\leq 0\)
\(\Leftrightarrow abc-(ab+bc+ac)+a+b+c-1\leq 0\)
\(\Leftrightarrow ab+bc+ac\geq a+b+c-1+abc\)
\(\Leftrightarrow ab+bc+ac\geq 1+abc\geq 1\) (do \(a,b,c\geq 0\rightarrow abc\geq 0\) )
Do đó:
\(N=4-2(ab+bc+ac)\leq 4-2=2\)
Hay \(N_{\max}=2\)
Dấu bằng xảy ra khi \((a,b,c)=(1,1,0)\) và hoán vị .