Cho 0<a<1 ; 0<b<2; 0<c<3
Tìm Max A=\(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\)
(Dùng Cauchy)
Cho 0<a<1 ;0<b<2 ;0<c<3
Tìm GTLN của A=\(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\)
Cho 0<a<1 ; 0<b<2 ; 0<c<3
Tìm GTLN của ; A= \(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\)
(Bài này dùng Cauchy,mình suy nghĩ nhiều ngày chưa ra cách giải,mong nhận được sự trợ giúp của mọi người và hoc24.vn)
Cho a,b,c>0 và a+b+c=3.Tìm GTLN của biểu thức:
A=\(\sqrt[3]{a+b+1}\) + \(\sqrt[3]{b+c+1}\) + \(\sqrt[3]{a+c+1}\)
(Sử dụng Cauchy)
Cho \(a,b>0;c\ne0\)
CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Cho a,b,c>0 thỏa mãn a+b+c\(\le\)3
CMR:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\ge\dfrac{3}{2}\)
(Sử dụng Cauchy)
Cho a,b,c>0 thỏa mãn a+b+c\(\le3\).
CMR : A= \(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\ge\dfrac{3}{2}\)
(Sử dụng Cauchy)
Cho a+b+c=1. Tìm GTLN của
\(A=\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ca}{\sqrt{b+ca}}+\dfrac{ab}{\sqrt{c+ab}}\)
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\) . CMR : \(\sqrt[3]{\dfrac{a}{b\left(b+2c\right)}}+\sqrt[3]{\dfrac{b}{c\left(c+2a\right)}}+\sqrt[3]{\dfrac{c}{a\left(a+2b\right)}\ge\dfrac{3}{\sqrt[3]{3}}}\)