Lời giải:
Vì $a,b,c\in (0;1]$ nên $ab,bc,ac\in (0;1]$
Do đó: \((ab-1)(bc-1)(ca-1)\leq 0\)
\(\Leftrightarrow (ab^2c-ab-bc+1)(ca-1)\leq 0\)
\(\Leftrightarrow a^2b^2c^2-(ab^2c+a^2bc+abc^2)+ab+bc+ac-1\leq 0\)
\(\Leftrightarrow a^2b^2c^2+ab+bc+ac\leq ab^2c+a^2bc+abc^2+1\)
\(\Leftrightarrow \frac{a^2b^2c^2+ab+bc+ac}{abc}\leq \frac{ab^2c+a^2bc+abc^2+1}{abc}\)
\(\Leftrightarrow abc+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq a+b+c+\frac{1}{abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$