Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Hoài Anh

Các bn giúp me bài này nữa đc ko?

a, Tìm giá trị nhỏ nhất của biểu thức A = (x + 2)2 + \(\left(y-\dfrac{1}{5}\right)^2\)- 10

b, Tìm GTLN của B = \(\dfrac{4}{\left(2x-3\right)^2+5}\)

--------------- HELP--------------------

TNA Atula
27 tháng 2 2018 lúc 21:19

a) (x+2)2+\(\left(y-\dfrac{1}{5}\right)^2-10\ge-10\)

Dau = xay ra khi : \(\left\{{}\begin{matrix}x+2=0\\y-\dfrac{1}{5}=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-2\\y=\dfrac{1}{5}\end{matrix}\right.\)

Vay GTNN cua A=-10 khi : x=-2 , y=1/5

b) ta co : (2x-3)2+5≥5

=> B=\(\dfrac{4}{\left(2x-3\right)^2+5}\le\dfrac{4}{5}\)

Dau = xay ra khi : 2x-3=0

=> x=3/2

Vậy GTLN của B=4/5 khí x=3/2

Skegur
27 tháng 2 2018 lúc 21:31

mk giúp bn bài này lunvui

Giải :

1, Ta có: (x + 2)2 ≥ 0 ∀ x, \(\left(y-\dfrac{1}{5}\right)^2\) ≥ 0 ∀ y

=> (x + 2)2 + \(\left(y-\dfrac{1}{5}\right)^2\) ≥ 0

=> (x + 2)2 + \(\left(y-\dfrac{1}{5}\right)^2\) - 10 ≥ 0 + (-10) = -10

=> A ≥ -10

Dấu "=" xảy ra khi (x + 2)2 = 0 và \(\left(y-\dfrac{1}{5}\right)^2\)= 0

=> x + 2 = 0 và \(y-\dfrac{1}{5}\) = 0

=> x = -2 và y = \(\dfrac{1}{5}\)

Vậy min A =10 khi x = -2 ; y = \(\dfrac{1}{5}\)

b, Ta có: ( 2x - 3)2 ≥ 0 ∀ x

=> ( 2x - 3)2 +5 ≥ 0 + 5 = 5

=> B ≤ \(\dfrac{4}{5}\)

Dấu " = " xảy ra khi (2x - 3)2 = 0 => 2x- 3 = 0

=> x = \(\dfrac{3}{2}\)

Vậy max A = \(\dfrac{4}{5}\) tại x = \(\dfrac{3}{2}\)


Các câu hỏi tương tự
Vũ Ngọc Thảo Nguyên
Xem chi tiết
dream XD
Xem chi tiết
L.A.Đ.H L(*OεV*)E(灬♥ω♥...
Xem chi tiết
Triều Nguyễn Quốc
Xem chi tiết
Sky MT-P
Xem chi tiết
A Hùng 3d
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
* L~O~V~E * S~N~O~W *
Xem chi tiết
Thuy Tran
Xem chi tiết