Đây không phải giới hạn dạng vô định \(\dfrac{0}{0}\) nên cứ thay số thôi:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x-1}\sqrt{5x-1}-1}{1-\sqrt{x}}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2.1-1}\sqrt{5.1-1}-1}{1-1}=\dfrac{1}{0}=+\infty\)
Đây không phải giới hạn dạng vô định \(\dfrac{0}{0}\) nên cứ thay số thôi:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x-1}\sqrt{5x-1}-1}{1-\sqrt{x}}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2.1-1}\sqrt{5.1-1}-1}{1-1}=\dfrac{1}{0}=+\infty\)
\(\dfrac{lim}{x\rightarrow1}\dfrac{\sqrt{2x-1}\sqrt[3]{5x-4}-1}{1-\sqrt{x}}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\sqrt[3]{2x+1}}{x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{4x+5}-3}{\sqrt[3]{5x+3}-2}\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt[4]{2x+3}+\sqrt[3]{2+3x}}{\sqrt{x+2}-1}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{x^2+1}+2x+1}{\sqrt[3]{2x^3+x+1}+x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x^2-x+1}-\sqrt[3]{2x+3}}{3x^2-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2+x}+\sqrt[3]{8x^3+x-1}}{\sqrt[4]{x^4+3}}\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{x^2-x+1}{x^2-1}\)
\(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x+6}-3}{\sqrt{2x-2}-2}\)
Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x^3-x^2}}{\sqrt{x-1}+1-x}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+x}-2\sqrt{3}}{x-3}\)
\(\lim\limits_{x\rightarrow-2}\dfrac{x^4+8x}{x^3+2x^2+x+2}\)
1) \(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
2)\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{x+3}}{x^2-3x+2}\)
3)\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-\sqrt{5-x^2}}{x^2-1}\)
4)\(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-\sqrt[3]{8x+43}}{2x^2+3x-2}\)
5) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-\sqrt[m]{1+bx}}{x}\)
6)\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-1}{x}\)
1) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-1}{x}\)
2)\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{1+7x}-x^3+3x-4}{x-1}\)
3) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x^3-x^2+1}{2x^2+3x-1}\)
4) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{4x+1}}\)
5) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt[3]{8x^3+x^2+1}}\)
6) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+3x-7}}{\sqrt[3]{27x^3+5x^2+x-4}}\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{x^2-3x+2}{\sqrt{3x+1}-2\sqrt[3]{2x-1}}\)