Theo định lí Viet \(x_1+x_2=\dfrac{-2^{2021}}{-1}=2^{2021}\)
Theo định lí Viet \(x_1+x_2=\dfrac{-2^{2021}}{-1}=2^{2021}\)
cho phương trình : x2 - (m+1) +m - 2 =0 (1)
tìm m để :
a) phương trình (1) có 2 nghiệm x1,x2 là độ dài 2 cạnh góc vuông có cạnh huyền bằng 10
b) phương trình (1) có 2 nghiệm x1, x2 sao cho biểu thức P= | x1 -x2 | đạt giá trị nhỏ nhất
Cho phương trình : x2 - ax +1 =0 . Tính theo a giá trị biểu thức A= x15 +x25 , trong đó x1 ; x2 là hai nghiệm của phương trình đã cho
Tìm m để phương trình: \(mx^2-2\left(m+1\right)x+m+5=0\) có 2 nghiệm x1,x2 thỏa mãn x1<0<x2<2
Tổng tất cả các giá trị của tham số thực m sao cho phương trình \(mx^2-2mx-2m-1=0\) có hai nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+2x_1x_2+3x_2^2=4x_1+5x_2-1\)
cho phương trình x2 - (m+1)x +m2 -2m +2 =0 , tìm m để phương trình có 2 nghiệm x1 , x2 sao cho biểu thức P = x12 +x22 đạt giá trị lớn nhất
cho phương trình \(x^2-4mx+9\left(m-1\right)^2=0\) giả sử phương trình đã cho có hai nghiệm x1,x2 và biểu thức liên hệ giữa các nghiệm độc lập đối với tham số m có dạng là \(\left(x1+x2+a\right)^2=bx1x2\) .giá trị b/a là
Cho phương trình \(x^2-2mx+4m-6=0\) Tìm giá trị của tham số m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn :
a) 0<x1<2<x2
b) 0<x1<x2<2
tính tổng bình phương các nghiệm của phương trình: \(\sqrt{x-2}-3\sqrt{x^2-4}=0\)