Tìm các số tự nhiên \(\overline{ab}\) sao cho \(\overline{ab,}\) \(\overline{ba,}\) \(\overline{\left(a+1\right)b,}\) \(\overline{\left(b+1\right)a}\) là các số nguyên tố có hai chữ số.
a, Tìm số tự nhiên \(n\) , chữ số a sao cho : \(1+2+3+...+n=\overline{aaa}\) ( \(\overline{aaa}\) là số có 3 chữ số )
b, Tìm \(x;y;z\) biết \(\frac{x}{y}=\frac{3}{2};5z=7z\) và \(x-2y+z=32\)
c, Cho \(c\ne0\) và \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\) . Chứng minh rằng : \(\frac{a}{b}=\frac{b}{c}.\) ( \(\overline{ab}\) và \(\overline{bc}\) là số có hai chữ số )
Cho tỉ lệ thức \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}.\)CMR \(\dfrac{\overline{abbbb...bbb}}{\overline{bbbb...bbbc}}=\dfrac{a}{c}\)( có n chữ số b; n là số tự nhiên)
Cho \(c\ne0\) và \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\). Chứng minh rằng : \(\frac{a}{b}=\frac{b}{c}\).( \(\overline{ab}\) và \(\overline{bc}\) số có 2 chữ số )
Cho \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\). Cmr : \(\dfrac{\overline{abbb...b}}{\overline{bbb...bc}}=\dfrac{a}{c}\)
( n-1 chữ số b ở cả tử và mẫu )
Tìm số tự nhiên có 4 chữ số \(\overline{abba}\) b iết \(\left(\overline{ab}\right)^2\)-\(\left(\overline{ba}\right)^2\)là số chính phương
Tìm số A =\(\overline{xy}\).\(\overline{zt}\). Biết A-2.\(\overline{yz}t\)=\(\overline{xz}\)(với kí hiệu \(\overline{xyzt}\)là số tự nhiên có 4 chữ số thứ tự là x,y,z,t )
1 . Tìm x , y nguyên biết : xy + 3x -y =6
2 . Một số chính phương có dạng \(\overline{abcd}\). Biết \(\overline{ab}-\overline{cd}=1\) . Hãy tìm số \(\overline{abcd}\)
Cho biết \(\dfrac{\overline{abc}}{\overline{bc}}=\dfrac{\overline{bca}}{\overline{ca}}=\dfrac{\overline{cab}}{\overline{ab}}\)
Tính tổng\(\dfrac{a}{\overline{bc}}+\dfrac{b}{\overline{ca}}+\dfrac{c}{\overline{ab}}\)