Bài 8: Tính chất của dãy tỉ số bằng nhau

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Bảo Thủy

Bài toán 26: Tìm x, y, z biết:

e) \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\) và 2x - 3y + z = 6.

g) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x + y + z = 49.

h) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x + 3y - z = 50.

i) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và xyz = 810.

Giúp mình nha !!!

Vũ Minh Tuấn
25 tháng 8 2019 lúc 20:29

Bài 26:

e) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}.\)

\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}.\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}.\)

=> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)\(2x-3y+z=6.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{9}=3=>x=3.9=27\\\frac{y}{12}=3=>y=3.12=36\\\frac{z}{20}=3=>z=3.20=60\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(27;36;60\right).\)

i) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x.y.z=810.\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

\(x.y.z=810\)

=> \(2k.3k.5k=810\)

=> \(30k^3=810\)

=> \(k^3=810:30\)

=> \(k^3=27\)

=> \(k=3.\)

Với \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.5=15\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(6;9;15\right).\)

Mình chỉ làm 2 câu thôi nhé.

Chúc bạn học tốt!

Phong Khánh
26 tháng 8 2019 lúc 17:10

e) Ta có:

\(\frac{x}{3}=\frac{y}{4}\)\(\frac{x}{9}=\frac{y}{12}\) (1)

\(\frac{y}{3}=\frac{z}{5}\)\(\frac{y}{12}=\frac{z}{20}\) (2)

Từ (1) và (2) ⇒ \(\frac{x}{9}=\frac{y}{12}=\frac{x}{20}\)\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

\(=\frac{2x-3y+z}{18-36+20}\)

\(=\frac{6}{2}=3\)


Các câu hỏi tương tự
Nguyễn Thanh Hằng
Xem chi tiết
Lê Thanh Thúy
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
Minh Tuệ
Xem chi tiết
Dương Bảo Thủy
Xem chi tiết
Nguyễn Trần Khánh Vân
Xem chi tiết
Mangekyou sharingan
Xem chi tiết
Nguyễn Thành Đăng
Xem chi tiết
Nguyễn Khánh Nhi
Xem chi tiết