Bài tập 1:
a) \(\left(a+b+c\right)^2\)\(=\left[\left(a+b\right)+c\right]^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ac+2bc+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca\)
b) \(\left(a+b-c\right)^2=\left[\left(a+b\right)-c\right]^2\)
\(=\left(a+b\right)^2-2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2-2ac-2bc+c^2\)
\(=a^2+b^2+c^2+2ab-2bc-2ca\)
c) \(\left(a-b-c\right)^2=\left[\left(a-b\right)-c\right]^2\)
\(=\left(a-b\right)^2-2\left(a-b\right)c+c^2\)
\(=a^2-2ab+b^2-2ac+2bc+c^2\)
\(=a^2+b^2+c^2-2ab+2bc-2ca\)
Bài tập 2:
\(49x^2-70x+25=\left(7x\right)^2-2.7x.5+5^2\)
\(=\left(7x-5\right)^2\)
a) Với x = 5 ta có: \(\left(7x-5\right)^2=\left(7.5-5\right)^2\)
\(=30^2=900\)
b) Với x = \(\dfrac{1}{7}\) ta có: \(\left(7x-5\right)^2=\left(7.\dfrac{1}{7}-5\right)^2\)
\(=\left(-4\right)^2=16\)
Vậy ...