a) x3 - 2x2 + x
= x(x2 - 2x + 1)
= x(x - 1)2
b) 2x2 + 4x + 2 - 2y2
= 2(x2 + 2x + 1 - y2)
= \(2\left [ (x + 1)^{2} - y^{2} \right ]\)
= 2(x - y + 1)(x + y + 1)
c) 2xy - x2 - y2 + 16
= 16 - (x2 - 2xy + y2)
= 42 - (x - y)2
= (4 - x + y)(4 + x - y)
a) x3 - 2x2 + x
= x(x2 - 2x + 1)
=x(x-1)2
b)2x2 +4x+2-2y2
=2(x2 +2x+1-y2)
=2[(x2+2x+1)-y2]
=2[(x+1)2-y2]
=2(x+1-y)(x+1+y)
c)2xy-x2-y2+16
=-[(x2-2xy+y2)-42]
=-[(x-y)2-42]
=-(x-y-4)(x-y+4)
a) x2−2x2+x
=x(x2−2x+1)
=x(x−1)2
b) 2x2+4x+2−2y2
=2[(x2+2x+1)−y2]
=2[(x+1)2−y2]
=2(x+1−y)(x+1+y)
c) 2xy−x2−y2+16
=16−(x2−2xy+y2)
=42−(x−y)2
=(4–x+y)(4+x–y)