a/ ĐKXĐ: \(-3\le x\le10\)
Bình phương 2 vế:
\(10-x+x+3+2\sqrt{-x^2+7x+30}=25\)
\(\Leftrightarrow\sqrt{-x^2+7x+30}=6\)
\(\Leftrightarrow-x^2+7x+30=36\)
\(\Leftrightarrow x^2-7x+6=0\Rightarrow\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\)
b/ Phương trình tọa độ giao điểm:
\(\left\{{}\begin{matrix}mx-2y=3\\3x+my=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2x-2my=3m\\6x+2my=8\end{matrix}\right.\)
\(\Rightarrow\left(m^2+6\right)x=3m+8\Rightarrow x=\frac{3m+8}{m^2+6}\) \(\Rightarrow y=\frac{4m-9}{m^2+6}\)
Để giao điểm nằm ở góc phần tư thứ tư thì: \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{3m+8}{m^2+6}>0\\\frac{4m-9}{m^2+6}< 0\end{matrix}\right.\) \(\Rightarrow-\frac{8}{3}< m< \frac{9}{4}\)