2: ĐKXĐ: (x-1)(-x+5)>0
=>(x-1)(x-5)<0
=>1<x<5
3: ĐKXĐ: x-1>0
hay x>1
5: ĐKXĐ: \(x\in R\)
2: ĐKXĐ: (x-1)(-x+5)>0
=>(x-1)(x-5)<0
=>1<x<5
3: ĐKXĐ: x-1>0
hay x>1
5: ĐKXĐ: \(x\in R\)
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a. \(y=f\left(x\right)=\dfrac{3x+1}{x^2+2\left(m-1\right)x+m^2+3m+5}\)
b. \(y=f\left(x\right)=\sqrt{x^2+2\left(m-1\right)x+m^2+m-6}\)
c. \(y=f\left(x\right)=\dfrac{3x+5}{\sqrt{x^2-2\left(m+3\right)x+m+9}}\)
Tìm tập xác định hàm số:
y=\(\sqrt{\dfrac{x^2+x+1}{\left|2x-1\right|-x-2}}\)
\(\sqrt{\left(x+5\right)\left(3x+4\right)}>4\left(x-1\right)\)
\(\sqrt{x+2}-\sqrt{3-x}< \sqrt{5-2x}\)
\(\left(x-3\right)\sqrt{x^2-4}\le x^2-9\)
mọi người ơi giúp mình với!!!! mình cần nó ngay bây giờ!!!!
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
Giải các phương trình và bất phương trình sau:
a) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
b) \(x^2+\left(\dfrac{x}{x-1}\right)^2=1\)
c) \(\dfrac{\sqrt{2-x}+4x-3}{x}\ge2\)
d) \(6\sqrt{\left(x-2\right)\left(x-32\right)}\le x^{^{ }2}-34x+48\)
giải phương trình
1.\(3\sqrt{x^2-25}=\left(2x-1\right)\sqrt{\frac{x-5}{x+5}}\)
2.\(\sqrt{\left(3x-1\right)\left(3x^2-4x+1\right)}=x-1\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\left(2x+3\right)\sqrt{4x-1}+\left(2y+3\right)\sqrt{4y-1}=2\sqrt{\left(2x+3\right)\left(2y+3\right)}\\x+y=4xy\end{matrix}\right.\)
Giải các bất phương trình sau:
1) \(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\)
2) \(\dfrac{\left(3-2x\right)x^2}{\left(x-1\right)}\ge0\)
3) \(\dfrac{2x}{x-1}\le\dfrac{5}{2x-1}\)
Tìm x
1, \(4x^4+12x^3+12x-47x^2+4=0\)\(4x^4+12x^3+12x-47x^2+4=0\)
2, \(x^2+\sqrt{x+1}=1\)
3.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
4.\(x-2\sqrt{x-1}-\left(x-1\right)\sqrt{x}+\sqrt{x^2-x}=0\)
5.\(x\sqrt[3]{35-x^3}-\left(x+\sqrt[3]{35-x^3}\right)=30\)
6. \(x^3-1=2\sqrt[3]{2x-1}\)
1) Giải bất phương trình sau:
a) \(x^2+\sqrt{x+11}=11\) b) \(9+\sqrt{9+x}=x\)
2) Xét dấu:
a) \(f\left(x\right)=\frac{\left(x^2-1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x^2-5x+4\right)}\) b) \(h\left(x\right)=\frac{1}{x^2-2x+3}-\frac{1}{x+2}\)