Ôn tập chương IV

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương Anh

1) Giải bất phương trình sau:

a) \(x^2+\sqrt{x+11}=11\) b) \(9+\sqrt{9+x}=x\)

2) Xét dấu:

a) \(f\left(x\right)=\frac{\left(x^2-1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x^2-5x+4\right)}\) b) \(h\left(x\right)=\frac{1}{x^2-2x+3}-\frac{1}{x+2}\)

Nguyễn Việt Lâm
25 tháng 3 2019 lúc 11:27

Câu 1:

a/ \(x\ge-11\)

Đặt \(\sqrt{x+11}=a\ge0\Rightarrow11=a^2-x\) pt trở thành:

\(x^2+a=a^2-x\Leftrightarrow x^2-a^2+a+x=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+x+a=0\Leftrightarrow\left(x-a+1\right)\left(x+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-a+1=0\\x+a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=a\\a=-x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{x+11}\left(1\right)\\-x=\sqrt{x+11}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\\left(x+1\right)^2=x+11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-10=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{41}}{2}\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}-x\ge0\\x^2=x+11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x^2-x-11=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-3\sqrt{5}}{2}\)

b/ \(x\ge-9\)

\(\sqrt{x+9}=x-9\Leftrightarrow\left\{{}\begin{matrix}x-9\ge0\\x+9=\left(x-9\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge9\\x^2-19x+72=0\end{matrix}\right.\) \(\Rightarrow x=\frac{19+\sqrt{73}}{2}\)

Nguyễn Việt Lâm
25 tháng 3 2019 lúc 12:51

Câu 1:

a/ \(x\ge-11\)

Đặt \(\sqrt{x+11}=a\ge0\Rightarrow11=a^2-x\), pt đã cho trở thành:

\(x^2+a=a^2-x\Leftrightarrow x^2-a^2+x+a=0\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

TH1: \(x+a=0\Leftrightarrow x+\sqrt{x+11}=0\Leftrightarrow-x=\sqrt{x+11}\)

\(\Leftrightarrow\left[{}\begin{matrix}-x\ge0\\x^2=x+11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x^2-x-11=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-3\sqrt{5}}{2}\)

TH2: \(x-a+1=0\Leftrightarrow x+1=\sqrt{x+11}\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\\left(x+1\right)^2=x+11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-10=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{41}}{2}\)

b/ \(\sqrt{9+x}=x-9\Leftrightarrow\left\{{}\begin{matrix}x-9\ge0\\9+x=\left(x-9\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge9\\x^2-19x+72=0\end{matrix}\right.\) \(\Rightarrow x=\frac{19+\sqrt{73}}{2}\)

Nguyễn Việt Lâm
25 tháng 3 2019 lúc 13:02

Câu 2:

a/

\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-1\right)\left(x-4\right)}=\frac{\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-4\right)}\)

Lập bảng xét dấu ta được:

\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -1\\x>4\\1< x< 3\end{matrix}\right.\)

\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-1< x< 1\\3< x< 4\end{matrix}\right.\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f\left(x\right)\) ko xác định tại \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

b/ \(h\left(x\right)=\frac{-x^2+3x-1}{\left(x^2-2x+3\right)\left(x+2\right)}\)

Lập bảng xét dấu ta được:

\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -2\\\frac{3-\sqrt{5}}{2}< x< \frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-2< x< \frac{3-\sqrt{5}}{2}\\x>\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)=0\) tại \(x=\frac{3\pm\sqrt{5}}{2}\)

\(f\left(x\right)\) ko xác định tại \(x=-2\)


Các câu hỏi tương tự
Tinh Lãm
Xem chi tiết
Shino Asada
Xem chi tiết
dung doan
Xem chi tiết
Cam Anh
Xem chi tiết
Thanh Nguyễn
Xem chi tiết
TRẦN LÊ MAI
Xem chi tiết
dung doan
Xem chi tiết
Shino Asada
Xem chi tiết
Linh Dieu
Xem chi tiết