Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Ánh

Bài 10 : Rút gọn các biểu thức 

a. A = ( x + 2 ) ( x2 - 2x + 4 ) - x3 + 2

b . B = ( x - 1 ) ( x2 + x + 1 ) - ( x + 1 ) ( x2 - x + 1 ) 

c. C = ( 2x - y ) ( 4x2 + 2xy + y2 ) + ( y - 3x ) ( y2 + 3xy + 9x2 ) 

HT.Phong (9A5)
21 tháng 8 2023 lúc 10:13

a) \(A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)

\(A=x^3+8-x^3+2\)

\(A=10\)

b) \(B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(B=x^3-1-\left(x^3+1\right)\)

\(B=x^3-1-x^3-1\)

\(B=-2\)

c) \(C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)

\(C=\left(2x\right)^3-y^3+y^3-\left(3x\right)^3\)

\(C=8x^3-y^3+y^3-27x^3\)

\(C=-19x^3\)

HaNa
21 tháng 8 2023 lúc 10:20

a)

\(A=\left(x+2\right)\left(x-2\right)\left(x-2\right)-x^3+2\\ =\left(x^2-4\right)\left(x-2\right)-x^3+2\\ =x^3-2x^2-4x+8-x^3+2\\ =-2x^2-4x+10\)

b)

\(B=x^3-1-\left(x^3+1\right)\\ =x^3-1-x^3-1\\ =-2\)

c)

\(C=\left(2x\right)^3-y^3+\left(y\right)^3-\left(3x\right)^3\\ =8x^3-y^3+y^3-27x^3\\ =-19x^3\)


Các câu hỏi tương tự
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Đan Linh Lê
Xem chi tiết
Trần Khánh Linh
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Quang Sáng
Xem chi tiết