bài 2 ) ta có : \(\left(d_1\right)\cap\left(d_2\right)\) tại \(A\left(3\overset{.}{,}-1\right)\)
thế \(A\) vào \(\left(d_3\right)\) ta thấy thỏa mãn \(\Rightarrow\) \(\left(d_3\right)\) có đi qua giao điểm của \(\left(d_1\right)\) và \(d_2\)
Bài 2 :
Tọa độ giao điểm của \(\left(d_1\right)\) và \(\left(d_2\right)\) là nghiệm của phương trình :
\(\left\{{}\begin{matrix}x+y=2\\-x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Thế vào đường thẳng (d3) là ra .
\(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)
\(\Leftrightarrow A^3=18+3A\)\(\Leftrightarrow A^3-3A-18=0\)
\(\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\)
De thay: \(A^2+3A+6=\left(A+\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0\forall A\)
\(\Leftrightarrow A=3\)