Bài 3: Nhân, chia số hữu tỉ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Phương Anh

bài 1 tìm x, y biết:

a,\(\dfrac{x}{2}=\dfrac{y}{5}\)và x+y=-14

b,\(\dfrac{x}{7}=\dfrac{y}{5}\)và x-y=8

Bài 2: Tìm x, y, z biết:

a,\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\)và x+y+z=56

b,\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)và 2x+y-z=12

Nguyễn Thanh Hằng
21 tháng 12 2017 lúc 20:49

1,a/ Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-2\\\dfrac{y}{5}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-10\end{matrix}\right.\)

Vậy ...

b, Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=4\\\dfrac{y}{5}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=28\\y=20\end{matrix}\right.\)

Vậy ...

2/a, Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{5}=4\\\dfrac{z}{7}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=10\\z=28\end{matrix}\right.\)

Vậy ...

b/ \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)

\(\Leftrightarrow\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}\)

Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}=\dfrac{2x+y-z}{6+5-8}=\dfrac{12}{3}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{6}=4\\\dfrac{y}{5}=4\\\dfrac{z}{8}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=20\\z=32\end{matrix}\right.\)

Vậy ..

Thiên Phong
21 tháng 12 2017 lúc 20:55

Bài Giải:

Bài 1:

a) Theo đề bài, ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}\)và x+y=-4

Áp dụng tính chất của dãy tỉ số bằng nhau

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)

Suy ra: x = 2 . (-2) =-4

y = 5 . (-2) =-10

Vậy: x = -4 và y = -10

Mấy câu sau cậu cứ dựa vào bài trên để giải nhé!

Tick cho Phong nhé:>

Yêu nhiều>3

#Phong_419

Nguyễn Thị Bích Thủy
21 tháng 12 2017 lúc 20:59

Bài 1
a) \(\dfrac{x}{2}=\dfrac{y}{5}\)
\(\text{Mà }x+y=-14\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)
\(\Rightarrow\dfrac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)
\(\Rightarrow\dfrac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)
\(\text{Vậy }\left\{{}\begin{matrix}x=-4\\y=-10\end{matrix}\right.\)
b) \(\dfrac{x}{7}=\dfrac{y}{5}\)
\(\text{Mà }x-y=8\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)
\(\Rightarrow\dfrac{x}{7}=4\Rightarrow x=4.7=28\)
\(\Rightarrow\dfrac{y}{5}=4\Rightarrow y=4.5=20\)
\(\text{Vậy }\left\{{}\begin{matrix}x=28\\y=20\end{matrix}\right.\)
Bài 2:
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\)
\(\text{Mà }x+y+z=56\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\dfrac{x}{2}=4\Rightarrow x=4.2=8\)
\(\Rightarrow\dfrac{y}{5}=4\Rightarrow y=4.5=20\)
\(\Rightarrow\dfrac{z}{7}=4\Rightarrow z=4.7=28\)
\(\text{Vậy }\left\{{}\begin{matrix}x=8\\y=20\\z=28\end{matrix}\right.\)
b) \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)
\(\Rightarrow\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}\)
\(\text{Mà }2x+y-z=12\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}=\dfrac{2x+y-z}{6+5-8}=\dfrac{12}{3}=4\)
\(\Rightarrow\dfrac{2x}{6}=4\Rightarrow2x=4.6=24\Rightarrow x=24:2=12\)
\(\Rightarrow\dfrac{y}{5}=4\Rightarrow y=4.5=20\)
\(\Rightarrow\dfrac{z}{8}=4\Rightarrow z=4.8=32\)
\(\text{Vậy }\left\{{}\begin{matrix}x=12\\y=20\\z=32\end{matrix}\right.\)

Hoàng
26 tháng 12 2017 lúc 9:23

bài 1:a, x=-4;y=10

b,x=28;y=20

bài 2:a, x=8;y=20;z=28

b,x=12;y=20;z=32


Các câu hỏi tương tự
jksadsas
Xem chi tiết
Nguyễn Phúc Nguyên
Xem chi tiết
Nguyễn Bảo Ngọc
Xem chi tiết
Tạ Uyên
Xem chi tiết
Trần Thị Trúc Linh
Xem chi tiết
Trịnh Thị Bích Diệp
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phạm Vũ Ngọc Duy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết