Bài 1: Phân tích đa thức thành nhân tử:
a) Ta có: \(x^3+2x^2-3x-6\)
\(=x^2\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-3\right)\)
b) Ta có: \(\left(x-9\right)\left(x-7\right)+1\)
\(=x^2-7x-9x+63+1\)
\(=x^2-16x+64\)
\(=\left(x-8\right)^2\)
c) Ta có: \(\left(x^2+y^2-17\right)^2-4\left(xy-4\right)^2\)
\(=\left(x^2+y^2-17\right)^2-\left(2xy-8\right)^2\)
\(=\left(x^2+y^2-17-2xy+8\right)\left(x^2+y^2-17+2xy-8\right)\)
\(=\left[\left(x^2-2xy+y^2\right)-9\right]\left[\left(x^2+2xy+y^2\right)-25\right]\)
\(=\left[\left(x-y\right)^2-3^2\right]\left[\left(x+y\right)^2-5^2\right]\)
\(=\left(x-y-3\right)\left(x-y+3\right)\left(x+y-5\right)\left(x+y+5\right)\)
Bài 2:
a) Ta có: \(x+2y=xy+2\)
\(\Leftrightarrow x-xy=2-2y\)
\(\Leftrightarrow x\left(1-y\right)=2\left(1-y\right)\)
\(\Leftrightarrow x\left(1-y\right)-2\left(1-y\right)=0\)
\(\Leftrightarrow\left(1-y\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-y=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
Vậy: (x,y)=(2;1)