Ôn tập phép nhân và phép chia đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Ngọc Trâm

Bài 1: Phân tích các đa thức sau thành nhân tử:

a)x2-2x

b) 3y3+6xy2+3x2y

c) x2-2xy-xy+2y2

Bài 2:Phân tích các đa thức sau thành nhân tử

a)x2-y2+5x-5y

b)x2+4x-y2+4

c)x2-6xy+9y2-16

d) 2x2-4x+2-2y2

e)x2+5x+6

g) x4+4

Bài 3: Tìm x biết

a) x3-2x=0

b) x(x-4)+(x-4)=0

c) x(x-3)+4x-12=0

d) x2(x-1)-4x+4=0

e) (5x-4)2-16=0

g)(2x-1)2-(x+3)2=0

Trần Nguyễn Bảo Quyên
27 tháng 10 2018 lúc 21:49

\(1.\)

\(a.\)

\(x^2-2x=x\left(x-2\right)\)

b.

\(3y^3+6xy^2+3x^2y\)

\(=3y\left(y^2+2xy+x^2\right)\)

\(=3y\left(x+y\right)^2\)

\(c.\)

\(x^2-2xy-xy+2y^2\)

\(=x\left(x-2y\right)-y\left(x-2y\right)\)

\(=\left(x-y\right)\left(x-2y\right)\)

\(2.\)

\(a.\)

\(x^2-y^2+5x-5y\)

\(=\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+5\right)\)

\(b.\)

\(x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(c.\)

\(x^2-6xy+9y^2-16\)

\(=\left(x^2-6xy+9y^2\right)-4^2\)

\(=\left(x-3\right)^2-4^2\)

\(=\left(x-3-4\right)\left(x-3+4\right)\)

\(=\left(x-7\right)\left(x+1\right)\)

Tương tự câu \(d,e,g\)

\(3.\)

\(a.\)

\(x^3-2x=0\)

\(\Rightarrow x\left(x^2-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{2}\end{matrix}\right.\)

\(b.\)

\(x\left(x-4\right)+\left(x-4\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)

\(c.\)

\(x\left(x-3\right)+4x-12=0\)

\(\Rightarrow x\left(x-3\right)+3\left(x-3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)

Tương tự \(d,e,g\)

@Nk>↑@
27 tháng 10 2018 lúc 21:54

1.a)\(x^2-2x=x\left(x-2\right)\)

b)\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)

c)\(x^2-2xy-xy+2y^2=x\left(x-y\right)-2y\left(x-y\right)=\left(x-2y\right)\left(x-y\right)\)

@Nk>↑@
27 tháng 10 2018 lúc 22:11

3.a)\(x^3-2x=0\)

\(\Leftrightarrow x^2\left(x-2\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

b)\(x\left(x-4\right)+\left(x-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)

c)\(x\left(x-3\right)+4x-12=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-4\\x=3\end{matrix}\right.\)

d)\(x^2\left(x-1\right)-4x+4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x-1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\x-2=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\x=2\\x=1\end{matrix}\right.\)

e)\(\left(5x-4\right)^2-16=0\)

\(\Leftrightarrow\left(5x-4+4\right)\left(5x-4-4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}5x=0\\5x-8=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{8}{5}\end{matrix}\right.\)

g)\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x+2=0\\x-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Trịnh Ngọc Quỳnh Anh
27 tháng 10 2018 lúc 22:15

Bài 1: Phân tích các đa thức sau thành nhân tử:

a)x2-2x = \(x.\left(x-2\right)\)

b) 3y3+6xy2+3x2y = \(3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)

c) x2-2xy-xy+2y2 = \(\left(x^2-2xy\right)-\left(xy-2y^2\right)\)= \(x.\left(x-2y\right)-y.\left(x-2y\right)=\left(x-y\right).\left(x-2y\right)\)

Bài 2:Phân tích các đa thức sau thành nhân tử

a)x2-y2+5x-5y = \(\left(x^2-y^2\right)+\left(5x-5y\right)\)= \(\left(x-y\right).\left(x+y\right)+5\left(x-y\right)=\left(x-y\right).\left(x+y+5\right)\)

b)x2+4x-y2+4=\(\left(x^2+4x+4\right)-y^2\)=\(\left(x+2\right)^2-y^2=\left(x+2-y\right).\left(x+2+y\right)\)

c)x2-6xy+9y2-16=\(\left(x-3y\right)^2-4^2=\left(x-3y-4\right).\left(x-3y+4\right)\)

d) 2x2-4x+2-2y2= \(2.\left(x^2-2x+1-y^2\right)=2.\left[\left(x-1\right)^2-y^2\right]\)

= \(2.\left(x-1-y\right).\left(x-1+y\right)\)

e)x2+5x+6= \(x^2+4x+x+4+2=\left(x^2+4x+4\right)+\left(x+2\right)\)

= \(\left(x+2\right)^2+\left(x+2\right)=\left(x+2\right).\left(x+2+1\right)=\left(x+2\right).\left(x+3\right)\)

g) x4+4 = \(\left(x^2\right)^2+2^2=\left(x^2-2\right).\left(x^2+2\right)\)

Bài 3: Tìm x biết

a) x3-2x=0

=> \(x.\left(x^2-2\right)=0=>x=0\) hay \(x^2-2=0\)=> \(x^2=2=>\)Không tìm đuợc x

Vậy x = 0

b) x(x-4)+(x-4)=0

=> \(\left(x-4\right).\left(x+1\right)=0=>x-4=0\) hay \(x+1=0\)

=> \(x=4\) hay \(x=-1\)

Vậy x = 4 hay x = -1

c) x(x-3)+4x-12=0

\(=>x.\left(x-3\right)+4x-12\)

=> \(x.\left(x-3\right)+4\left(x-3\right)=0\)

=> \(\left(x+4\right).\left(x-3\right)=0\)

=> \(x+4=0\) hay \(x-3=0\)

=> \(x=-4\) hay \(x=3\)

d) x2(x-1)-4x+4=0

=> \(x^2\left(x-1\right)-\left(4x-4\right)=0\)

=> \(x^2\left(x-1\right)-4\left(x-1\right)=0\)

=> \(\left(x^2-4\right)\left(x-1\right)=0\)

=> \(x^2-4=0\) hay \(x-1=0\)

=> \(x^2=4\) hay \(x=1\)

=> \(x=2\) hay \(x=-2\) hay \(x=1\)

Vậy x = 2 hay x = -2 hay x = 1

e) (5x-4)2-16=0

=> \(\left(5x-4\right)^2-4^2=0\)

=> \(\left(5x-4-4\right).\left(5x-4+4\right)=\left(5x-8\right).5x=0\)

=> \(5x-8=0\) hay \(5x=0\)

=> \(5x=8=>x=\dfrac{8}{5}\) hay x = 0

Vậy \(x=\dfrac{8}{5}\) hay x = 0

g)(2x-1)2-(x+3)2=0

=> \(\left(2x-1-x-3\right).\left(2x-1+x+3\right)=0\)

=> \(\left(x-4\right).2=0=>x-4=0=>x=4\)

Vậy x = 4

@Nk>↑@
27 tháng 10 2018 lúc 22:02

2.a)\(x^2-y^2+5x-5y=\left(x+y\right)\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(x+y+5\right)\)

b)\(x^2+4x-y^2+4=\left(x+2\right)^2-y^2=\left(x+2+y\right)\left(x+2-y\right)\)

c)\(x^2-6xy+9y^2-16=\left(x-3y\right)^2-4^2=\left(x-3y+4\right)\left(x-3y-4\right)\)

d)\(2x^2-4x+2-y^2=2\left[\left(x-1\right)^2-y^2\right]=2\left(x-1+y\right)\left(x-1-y\right)\)

e)Sai đề: \(x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)=\left(x+6\right)\left(x-1\right)\)

g)\(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)


Các câu hỏi tương tự
lê minh
Xem chi tiết
~~~~
Xem chi tiết
Đã Ẩn
Xem chi tiết
Tâm Pig
Xem chi tiết
trần bá thanh
Xem chi tiết
mit béo
Xem chi tiết
trần bá thanh
Xem chi tiết
Vân Nguyễn lê
Xem chi tiết
Khanh
Xem chi tiết