Bài 1 : Phân tích các đa thức sau thành nhân tử
1) 4x\(^2\) - 6x
2) 9x\(^4\)y\(^3\) + 3x\(^2\)y\(^4\)
c) x\(^3\) - 2x\(^2\) + 5x
d) 3x (x-1) +5 (x-1)
e) 2x\(^2\) (x+1) + 4 (x+1)
f) -3x - 6xy + 9xz
Bài 2 : Cho hình thang ABCD (AB//CD) . Gọi E và F theo thứ tự là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF .
a) Chứng minh : AK = KC
b) Biết AB = 4 cm , CD = 10 cm . Tính độ dài các cạnh EK , KF
Help me!!!
Bài 1:
a) Ta có: \(4x^2-6x\)
\(=2x\cdot2x-2x\cdot3\)
\(=2x\left(2x-3\right)\)
b) Ta có: \(9x^4y^3+3x^2y^4\)
\(=3x^2y^3\cdot3x^2+3x^2y^3\cdot y\)
\(=3x^2y^3\left(3x^2+y\right)\)
c) Ta có: \(x^3-2x^2+5x\)
\(=x\cdot x^2-x\cdot2x+5\cdot x\)
\(=x\left(x^2-2x+5\right)\)
d) Ta có: \(3x\left(x-1\right)+5\left(x-1\right)\)
\(=3x\cdot\left(x-1\right)+5\cdot\left(x-1\right)\)
\(=\left(x-1\right)\left(3x+5\right)\)
e) Ta có: \(2x^2\left(x+1\right)+4\left(x+1\right)\)
\(=2\cdot\left(x+1\right)\cdot x^2+2\cdot\left(x+1\right)\cdot2\)
\(=2\left(x+1\right)\cdot\left(x^2+2\right)\)
f) Ta có: \(-3x+6xy+9xz\)
\(=9xz+6xy-3x\)
\(=3x\cdot3z+3x\cdot2y-3x\cdot1\)
\(=3x\left(3z+2y-1\right)\)
Bài 2:
a)Xét hình thang ABCD(AB//CD) có
E là trung điểm của AD(gt)
F là trung điểm của BC(gt)
Do đó: EF là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)
⇒EF//AB//CD và \(EF=\frac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)
Xét ΔADC có
E là trung điểm của AD(gt)
EK//DC(EF//DC, K∈EF)
Do đó: K là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
⇒AK=KC(đpcm)
b) Xét ΔADC có
E là trung điểm của AD(gt)
K là trung điểm của AC(cmt)
Do đó: EK là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
⇒\(EK=\frac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)
⇒\(EK=\frac{10}{2}=5cm\)
Ta có: \(EF=\frac{AB+DC}{2}\)(cmt)
nên \(EF=\frac{4+10}{2}=7cm\)
Ta có: K nằm giữa E và F(E,K,F thẳng hàng)
nên EK+KF=EF
⇒KF=EF-EK=7-5=2cm
Vậy: EK=5cm; KF=2cm