Bài 1 : Chứng minh rằng : \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\) chia hết cho 120 ( với \(x\in N\))
Bài 2 : Cho \(f\left(x\right)\) là hàm số xác định với mọi x thỏa mãn điều kiện \(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\) và \(f\left(2\right)=10\) . Tính \(f\left(32\right)\)
Các bạn giúp ạ : Bạn @Vũ Minh Tuấn , @Băng Băng 2k6 , @Phạm Lan Hương , và cô @Akai Haruma giúp em với ạ !!!
Bài 1:
Ta có:
\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)
\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)
\(=3^x.\left(3+3^2+3^3+3^4\right)+...+3^{x+96}.\left(3+3^2+3^3+3^4\right)\)
\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)
\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)
Vì \(120⋮120.\)
\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)
\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\in N\right)\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 2:
Vì \(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\)
\(\Rightarrow f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)
\(\Rightarrow f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000.\)
\(\Rightarrow f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000.\)
Vậy \(f\left(32\right)=100000.\)
Chúc bạn học tốt!
b1:
\(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}+...+3^{x+96}+3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\)
=\(3^x.3+3^x.3^2+3^x.3^3+3^x.3^4+...+3^x.3^{97}+3^x.3^{98}+3^x.3^{99}+3^x.3^{100}\)
=\(3^x.\left(3+3^2+3^3+3^4\right)+...+3^x.3^{96}.\left(3+3^2+3^3+3^4\right)\)
=\(120.\left(3^x+...+3^{x+96}\right)\)\(⋮120\) với mọi x\(\in N\)
=> đpcm